Siemens P4 diffractometer	$\theta_{\rm max} = 27.5^{\circ}$
$\theta/2\theta$ scans	$h = -1 \rightarrow 34$
Absorption correction: none	$k = -1 \rightarrow 13$
5589 measured reflections	$l = -25 \rightarrow 20$
4711 independent reflections	3 standard reflections
1670 reflections with	every 97 reflections
$I > 2\sigma(I)$	intensity decay: <3%
$R_{\rm int} = 0.044$	

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.043$	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.107$	$\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.740	Extinction correction: none
4711 reflections	Scattering factors from
262 parameters	International Tables for
H atoms constrained	Crystallography (Vol. C)
$w = 1/[\sigma^2(F_o^2) + (0.0318P)^2]$	
where $P = (F_0^2 + 2F_c^2)/3$	

Table 2. Selected geometric parameters (Å, °) for (II)

N1-03	1.218 (2)	C4-C4a	1.465 (3)
N1-04	1.226 (2)	C4a—C9	1.505 (3)
N1-C20	1.475 (3)	C5—C5a	1.472 (3)
01—C4	1.230(2)	C5a—C8a	1.329 (3)
O2—C5	1.222 (2)	C5a—C9	1.514 (3)
Cla—C4a	1.337 (3)	C8a010	1.372 (3)
C1a010	1.382 (2)		
O3-N1-O4	122.5 (3)	C8a—O10—C1a	117.8 (2)
O3-N1-C20	120.3 (2)	C19-C20-N1	115.2 (2)
O4-N1-C20	117.1 (2)	C15-C20-N1	122.2 (2)
C4a—C9—C5a	109.6 (2)		

For both compounds, data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXTL (Siemens, 1996); program(s) used to refine structures: SHELXTL; molecular graphics: ORTEPIII (Johnson & Burnett, 1997); software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

JJ thanks the CSIR, India, for providing a Senior Research Fellowship. SSSR thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship. HKF would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 190-9609-2801.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1174). Services for accessing these data are described at the back of the journal.

References

- Bahr, N., Tierney, E. & Reymond, J.-L. (1997). Tetrahedron Lett. 38, 1489–1492.
- Blackburn, A. C., Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1486-1488.
- Brito-Arias, M., Ramirez, G., Rivas, R. E., Molins, E. & Maniukiewicz, W. (1996). Acta Cryst. C52, 2811–2814.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
Johnson, C. K. & Burnett, M. N. (1997). ORTEPIII. Version 1.0.2.
University of Glasgow, Scotland.

- Miao, F.-M., Zhang, L.-J., Wen, X., Zhou, W.-H., Niu, Z.-C., Han, J.-G. & Liu, X.-L. (1996). Acta Cryst. C52, 700-702.
- Murugan, P. & Ramakrishnan, V. T. (1997). Indian J. Heterocycl. Chem. 7, 153-154.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sakoda, R., Matsumoto, H. & Seto, K. (1993). Synthesis, pp. 705-713.
- Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. & Shanmugasundram, P. S. (1996). Acta Cryst. C52, 481–483.

Acta Cryst. (1999). C55, 1517-1519

Bis[4-(2-methoxycarbonyl-5-thienyl)]phenyl ether†

S. Shanmuga Sundara Raj,^a Hoong-Kun Fun,^a Susmita Gupta^b and Jayanta Kumar Ray^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India. E-mail: hkfun@usm.my

(Received 4 May 1999; accepted 11 June 1999)

Abstract

The title compound, $C_{24}H_{18}O_5S_2$, possesses crystallographic C_2 symmetry. The thienyl ring adopts a planar conformation. The methoxycarbonyl group is twisted 9.7 (1)° out of plane of its parent thienyl ring.

Comment

The synthesis of non-natural cavity-shaped molecules has invaded the field of molecular recognition in recent years (Haldar *et al.*, 1997). The focus on heterocyclic compounds has generated novel receptors which are capable of binding suitable guests through hydrogen bonding, π -stacking forces and van der Waals interactions. This has further enriched the field of supramolecular chemistry. In connection with our studies towards the synthesis of novel cavity-shaped receptors for the selective recognition of long-chain dicarboxylic acids, we have synthesized some bis-thiophene-5-carboxamide derivatives (Gupta *et al.*, 1999) where the diphenyl ether moiety has been used as a spacer between the two thiophene units.

The title compound, (I), is the precursor of our designed artificial receptor. In this cavity-shaped molecule,

[†] Alternative name: dimethyl 5,5'-(oxydi-*p*-phenylene)bis(thiophene-2-carboxylate).

two S atoms may have an 'in-in', 'in-out' or 'out-out' conformation. These conformational descriptors are normally used to define the stereochemical rotamers derivable from the positions of the S atoms of the two thiopene rings with respect to the concave curvature of the molecule at the ether-O atom. Therefore, the determination of the crystal structure is essential to confirm the actual conformation. In solution, free rotation of the C4-C7 bond enables the two S atoms to face each other, thereby allowing the receptor to bind bioactive molecules.

The structure consists of a half-molecule in the asymmetric unit and the other half is related by crystallographic C_2 symmetry. The conformation of the symmetry-related half of the molecule is defined by the torsion angle C9-C10-O3-C10ⁱ of 33.4 (3)° [symmetry code (i): 2-x, -y, z]. The bond lengths and angles are comparable with those reported for similar environments (Allen et al., 1987). The slightly longer average C-S distance of 1.723(3) Å compared with 1.69(1) Å in 2-(2-aminophenylthio)-2-(2-thienyl)ethyl 2-thienyl acetone (Morgant et al., 1996), 1.64 (2) Å in 3-(4-methylphenyl)-1-(3-thienyl)-2-propen-1-one (Youping, Genbo & Jiangiu, 1995) and 1.694 (4) Å in 3-(4-bromophenyl)-1-(3-thienyl)-2propen-1-one (Youping, Qiangjin & Genbo, 1995) may be due to the inclusion of a methoxycarbonyl substituent on the thienyl ring. The widening of the angle at O3 $[123.3(1)^{\circ}]$ probably results from the twist between the phenyl rings. This value is comparable with 121.3 (8)° for bastidin-5 tetramethyl ether (Kazlauskas et al., 1981), 120.6 (12)° for 3-phenyloxybenzyl cis-3-(2',2'-dibromovinyl)-2,2-dimethylcyclopropanecarboxylate and 122.1 (15)° for its dichloro analogue (Owen, 1976). The thienyl ring has a planar conformation and

there is no sign of the disorder that is typical of other related structures (Ray et al., 1997). In the title compound, the S atoms are in the 'out-out' conformation and the planes of the two thienyl rings have an interplanar angle of $40.5(1)^\circ$. The plane of the methoxycarbonyl group is twisted by $9.7(1)^{\circ}$ out of the plane of its parent thienyl ring. The interplanar angle between the thienyl and phenyl rings is $12.4(1)^{\circ}$.

Experimental

The title compound (Gupta et al., 1998) was obtained by condensation of methyl thioglycolate (Kar et al., 1991) with the bis-chloroaldehyde bis[4-(1-chloro-2-formylethenyl)phenyl] ether, which in turn was prepared by treatment of bis(4-acetylphenyl) ether with POCl₃/N,N-dimethylformamide at 273-323 K for 4 d. X-ray quality crystals were obtained by slow evaporation from benzene (m.p. 476-478 K).

Crystal data

$C_{24}H_{18}O_5S_2$	Mo $K\alpha$ radiation
$M_r = 450.50$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 5357
Aba2	reflections
a = 7.3785(2) Å	$\theta = 0.85 - 28.34^{\circ}$
b = 47.9241 (10) Å	$\mu = 0.290 \text{ mm}^{-1}$
c = 5.9069 (2) Å	T = 293 (2) K
$V = 2088.7 (1) \text{ Å}^3$	Slab
Z = 4	$0.44 \times 0.34 \times 0.06$ mm
$D_x = 1.433 \text{ Mg m}^{-3}$	Colourless
D_m not measured	

Data collection

Siemens SMART CCD area	2164 reflections with
detector diffractometer	$I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.038$
Absorption correction:	$\theta_{\rm max} = 28.23^{\circ}$
empirical (SADABS;	$h = -8 \rightarrow 9$
Sheldrick, 1996)	$k = -63 \rightarrow 61$
$T_{\min} = 0.883, T_{\max} = 0.983$	$l = -7 \rightarrow 7$
6884 measured reflections	
1414 independent reflections	
(plus 1003 Friedel-related	
reflections)	

Fig. 1. A 50% probability displacement ellipsoid plot of (I) (the molecule possesses crystallographic C_2 symmetry).

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.030$	$\Delta \rho_{\rm max} = 0.251 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.095$	$\Delta \rho_{\rm min} = -0.242 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.083	Extinction correction: none
2417 reflections	Scattering factors from
166 parameters	International Tables for
H atoms treated by a	Crystallography (Vol. C)
mixture of independent	Absolute structure:
and constrained refinement	Flack (1983)
$w = 1/[\sigma^2(F_o^2) + (0.0564P)^2]$	Flack parameter $= 0.04(8)$
where $P = (F_o^2 + 2F_c^2)/3$	

Table	1. Fractiona	l atomic d	coordinates	and	equival	ent
	isotropic d	isplaceme	ent paramete	ers (Å	²)	

			. ,	
	x	y	z	U_{eq}
S1	0.94722 (7)	0.136182 (8)	0.05891 (11)	0.03939 (14)
01	0.9504 (3)	0.19534 (3)	-0.0037 (4)	0.0662 (6)
O2	1.0364 (3)	0.20886 (4)	0.3435 (4)	0.0798 (7)
O3	1	0	-0.1333 (4)	0.0404 (4)
CI	1.0021 (3)	0.16063 (4)	0.2608 (4)	0.0397 (4)
C2	1.0612 (3)	0.14842 (4)	0.4572 (4)	0.0426 (5)
C3	1.0646 (3)	0.11879 (4)	0.4423 (4)	0.0389 (4)
C4	1.0074 (2)	0.10899 (4)	0.2350 (4)	0.0302 (4)
C5	0.9978 (4)	0.19091 (4)	0.2105 (4)	0.0501 (6)
C6	0.9571 (5)	0.22377 (5)	-0.0819(7)	0.0847 (11)
C7	0.9994 (2)	0.08004 (3)	0.1510 (4)	0.0286 (3)
C8	1.0826 (2)	0.05803 (4)	0.2674 (3)	0.0328 (4)
C9	1.0803 (2)	0.03076 (4)	0.1847 (4)	0.0343 (4)
C10	0.9953 (2)	0.02546 (3)	-0.0218(4)	0.0303 (4)
C11	0.9110 (2)	0.04687 (4)	-0.1404 (4)	0.0326 (4)
C12	0.9138 (2)	0.07378 (4)	-0.0547(3)	0.0322(4)

$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$

Table 2. Selected geometric parameters (Å, °)

	0	•	
\$1—C1	1.720 (2)	O1—C6	1.439 (3)
S1-C4	1.7255 (19)	O2C5	1.199 (3)
O1-C5	1.330 (4)	O3—C10	1.387 (2)
C1	92.05 (11)	O2C5C1	124.5 (2)
C5-01-C6	116.6 (2)	01-C5-C1	110.7 (2)
O2—C5—O1	124.9 (2)		

The H atoms of the methyl groups were placed in geometrically optimized positions and constrained to ride on their parent C atom, while all other H atoms were refined freely $(x, y, z \text{ and } U_{\text{tso}})$; C—H distances are in the range 0.89 (2)–0.94 (2) Å.

Data collection: *SMART* (Siemens, 1996). Cell refinement: *SAINT* (Siemens, 1996). Data reduction: *SAINT*. Program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997). Program(s) used to refine structure: *SHELXTL*. Molecular graphics: *SHELXTL*. Software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 1990).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 190-9609-2801. SSSR thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1085). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Gupta, S., Kar, G. K. & Ray, J. K. (1998). Proceedings of the 35th Annual Convention of Chemists (Indian Chemical Society), p. C1. Calcutta: Indian Chemical Society.
- Gupta, S., Kar, G. K. & Ray, J. K. (1999). Unpublished results.
- Haldar, M. K., Kar, G. K. & Ray, J. K. (1997). Synlett, pp. 1057–1058.Kar, G. K., Karmakar, A. C. & Ray, J. K. (1991). J. Heterocycl. Chem. 28, 999–1002.
- Kazlauskas, R., Lidgard, R. O., Murphy, P. T., Wells, R. J. & Blount, J. F. (1981). Aust. J. Chem. 34, 765-786.
- Morgant, G., Labouze, X., Viossat, B., Lancelot, J.-C. & Dung, N. H. (1996). Acta Cryst. C52, 923–925.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Owen, J. D. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 1231-1235.
- Ray, J. K., Roy, B. C., Chinnakali, K., Razak, I. A. & Fun, H.-K. (1997). Acta Cryst. C53, 1622–1624.
- Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Youping, H., Genbo, S. & Jianqiu, S. (1995). Acta Cryst. C51, 989-991.
- Youping, H., Qiangjin, W. & Genbo, S. (1995). Acta Cryst. C51, 1167-1168.

Acta Cryst. (1999). C55, 1519-1522

Methyl 1-(4-chlorobenzyl)-2-oxocyclohexane-1-carboxylate and methyl (2RS,4aRS,8aRS)-2-(4-chlorobenzyl)-3-oxoperhydronaphthalene-2-carboxylate

H. Surya Prakash Rao,^a S. Rajamathe,^a S. Shanmuga Sundara Raj,^b Kandasamy Chinnakali,^b† Ibrahim Abdul Razak^b and Hoong-Kun Fun^b

^aDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my

(Received 7 May 1999; accepted 19 May 1999)

Abstract

In the title compounds, methyl 1-(4-chlorobenzyl)-2-oxocyclohexane-1-carboxylate, $C_{15}H_{17}ClO_3$, (I), and methyl (2RS,4aRS,8aRS)-2-(4-chlorobenzyl)-3-oxoper-

[†] On leave from: Department of Physics, Anna University, Chennai 600 025, India.